Towards solutions for 5G security

Valtteri Niemi
University of Helsinki, Finland
Globecom workshop
San Diego 6 December 2015
What are the issues?

• NGMN 5G whitepaper, February 2015
• Ericsson security whitepaper, June 2015
• Schneider, Horn (Nokia), Trustcom WS, August 2015
• Ginzboorg (Huawei), Trustcom WS, August 2015
<table>
<thead>
<tr>
<th>Feature</th>
<th>NGMN</th>
<th>E///</th>
<th>NOK</th>
<th>HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud security</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>E2E encryption</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Identity privacy</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Flexible security</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Energy-efficiency</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>User plane integrity</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Security set-up</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>DoS protection</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>
Cloud security

• Generic cloud security issues
 – Isolation
 – Platform security
 – etc.
Cloud security

• Generic cloud security issues
 – Isolation
 – Platform security
 – etc.

• 5G specific issues
 – Where to store cryptographic keys?
 – How to manage identities?
Cloud security

• Generic cloud security issues
 – Isolation
 – Platform security
 – etc.

• 5G specific issues
 – Where to store cryptographic keys?
 – How to manage identities?

→ (some sort of) security and identity layer is needed
End-to-end protection

- 2G, 3G, 4G traffic is protected hop-by-hop
End-to-end protection

• 2G, 3G, 4G traffic is protected hop-by-hop
• But end-to-end has many advantages:
 – Trust on cloud is minimized
 – Uniform protection
 – Better visibility for users
 – etc.
End-to-end protection

• 2G, 3G, 4G traffic is protected hop-by-hop
• But end-to-end has many advantages:
 – Trust on cloud is minimized
 – Uniform protection
 – Better visibility for users
 – etc.
• The main disadvantage:
 – There are lots of end points; also on control plane
 – Several other disadvantages, e.g. traffic analysis
End-to-end protection

- **Separation** of user plane and control plane could drive towards end-to-end protection
- End-to-end is even more useful for **integrity** protection than for **encryption**
Identity and location privacy

- Key feature in mobile systems since GSM
- Protection against *passive* adversaries
Active attack

- A *false* element masquerades
 - as a base station towards terminal
 - as a terminal towards network

- Objectives of the attacker:
 - eavesdropping
 - stealing of connection
 - manipulating data
Active attack

- A **false** element masquerades
 - as a base station towards terminal
 - as a terminal towards network
- Objectives of the attacker:
 - eavesdropping
 - stealing of connection
 - manipulating data

This part sufficient for IMSI catcher
A German company called GSMK recently came out with the CryptoPhone, which for $3,500 can allegedly sense mobile surveillance technology. But there is some skepticism over the accuracy of its tracking. The Washington Post takes a ride to the Russian embassy to see the phone in action. (Alice Li/The Washington Post)
Identity confidentiality in LTE

- Mechanism inherited from GSM and 3G
- User’s permanent identity (IMSI) is sent to the network *only if* network cannot identify the UE otherwise

From 3GPP TS 33.401
Identity confidentiality in LTE (2/2)

- Network assigns a temporary identity for the UE
- It is sent to the UE in encrypted message
- In GSM/3G the temporary identity is
 - TMSI for CS domain
 - P-TMSI for PS domain
- In EPS the temporary identity is called GUTI (Globally Unique Temporary Identity)
Identity privacy in 5G

Joint work with P. Ginzboorg
(submitted)
Classification of adversaries

<table>
<thead>
<tr>
<th></th>
<th>Passive</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside of 5G RAN</td>
<td>collect IMSI (but cannot relate IMSI to TMSI)</td>
<td>False Base Station, could force 2G connection, then e.g. becomes Man-in-the-middle Identity probing: e.g., call target phone nr. and wait for answer.</td>
</tr>
<tr>
<td>5G RAN operator = attacker</td>
<td>maps TMSI to IMSI and collects (IMSI, time, location) records.</td>
<td>(i) This attacker has all the capabilities of the other attackers, and in addition (ii) he can observe and control the signaling messages in the 5G RAN. (This gives an advantage, for example, when doing identity probing.) (iii) The attacker may also try to analyze the user plane data, if that data is unprotected. For example, looks for application identities.</td>
</tr>
</tbody>
</table>
Identity protection in 2G/3G/4G/5G

<table>
<thead>
<tr>
<th>Attacker type</th>
<th>2G</th>
<th>3G</th>
<th>4G</th>
<th>5G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attacker is outside RAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes?</td>
</tr>
<tr>
<td>IMSI catcher</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>?</td>
</tr>
<tr>
<td>MitM</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes?</td>
</tr>
<tr>
<td>RAN=Attacker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>?</td>
</tr>
<tr>
<td>Active</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No?</td>
</tr>
</tbody>
</table>
Methods to prevent IMSI catchers

• Second layer of pseudonyms
 – Shared with home network operator
 – But requires keeping synchronized state with every user

• User identity is encrypted by network public key in the connection set-up
 – But some sort of PKI is needed
New attacks against LTE identity and location privacy

Joint work with A. Shaik, R. Borgaonkar, N. Asokan and J-P. Seifert
(Blackhat Europe, November 2015)
Experimental set-up
Passive attack

- Universal Software Radio Peripheral (USRP)
- srsLTE software
- Sniffing broadcast channels, incl. paging
- Observed LTE temporary identity GUTI
Results

• Observed three major German operators in Berlin
• Sometimes no GUTI changes in up to 3 days
• Sometimes GUTI changed but only by one hexadigit
Semi-passive attack

- Passive monitoring + triggers LTE signaling by *legitimate* actions:
 - Call attempt towards the target
 - Sends messages via social media, e.g. Facebook, WhatsApp
- Tries to avoid alerting the target
- Analogous to "semi-honest" adversary model in crypto
Facebook

- Incoming messages in "Other" folder often unnoticed
Smart paging

• First try paging only in the cell where the user was last seen
• If no answer, then try the whole tracking area
Semi-passive attack: results

• Facebook:
 – 10-20 messages from unknown Facebook user
 – Need to know Facebook ID of the target
 – Smart paging in use → localize in cell level
 (approx. 2 km² in Berlin city)
 – However, sniffer needs to be in the correct cell

• Similar results for VoLTE and WhatsApp
Active attack

• requires rogue eNodeB:
 – USRP B210 hardware
 – openLTE software, esp. LTE_Fdd_enodeb application
UE measurement reports

• Used for troubleshooting and SON purposes
• Some measurements may be sent before signaling security is activated
 – This exception against general principle of protecting all non-broadcast signaling explicitly allowed in specifications
• Measurements include info about neighbor cells etc
 – may even include GPS coordinates
Active attack accuracy

• Possible to get the exact location of the target
• However, we did not try this against targets in real networks
Summary of attacks

<table>
<thead>
<tr>
<th>Adversary Type</th>
<th>Vulnerability Type</th>
<th>Possible tradeoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive</td>
<td>Under specification</td>
<td>(Perceived) security vs availability</td>
</tr>
<tr>
<td>Semi-passive</td>
<td>Application software architecture</td>
<td>Security vs functionality</td>
</tr>
<tr>
<td>Active</td>
<td>Specification & implementation flaw</td>
<td>(Perceived) security vs availability</td>
</tr>
</tbody>
</table>
General learnings

• Trade-off equilibrium between security and availability/usability/functionality/efficiency may change over time

• Include not only safety margins in security mechanisms but also agility

• Network programmability and Cloud computing enable this
Flexible security

• Different domains/verticals have different needs
• Network slices could help in satisfying these
Flexible security

- Different domains/verticals have different needs
- Network slices could help in satisfying these
- Example: car communications have always-on domain-specific security mechanisms
Flexible security

• Different domains/verticals have different needs
• Network slices could help in satisfying these
• Example: car communications have always-on domain-specific security mechanisms
• Car communications also require low latency
Flexible security

• Different domains/verticals have different needs
• Network slices could help in satisfying these
• Example: car communications have always-on domain-specific security mechanisms
• Car communications also require low latency
 ➔ would be helpful if generic 5G security is turned off
Flexible security

• Same security layer could serve all domains but:
Flexible security

• Same security layer could serve all domains but:
• Domains could have their own domain-wide policies
Flexible security

• Same security layer could serve all domains but:
• Domains could have their own domain-wide policies

• WARNING !!!

Dangerous to turn off lower layer protection just because application layer claims to have protection

- especially in hop-by-hop model
- requires specific security for configuration
Energy-efficiency

• Driving force in whole 5G
• Difficult to save energy in security mechanisms, e.g. cryptographic algorithms
 – How to optimize bit manipulations?
Energy-efficiency

• Driving force in whole 5G
• Difficult to save energy in security mechanisms, e.g. cryptographic algorithms
 – How to optimize bit manipulations?
• **Lightweight** crypto
 – Seems to save on silicon, not energy (e.g. more rounds with same logical gates)
User plane integrity

- 3G, 4G signalling is protected by message authentication code
- User plane not
 - Would cause communication and computation overhead
User plane integrity

• 3G, 4G signalling is protected by **message authentication code**

• User plane **not**
 – Would cause communication and computation overhead

• In principle, straight-forward to add this in 5G
 – If overhead is tolerable
User plane integrity

• Relates to end-to-end vs hop-by-hop discussion
 – Hop-by-hop authentication is tricky
Let's meet at Lucky Bar 9pm
Alice

MAC is OK

MAC' is OK
Authentication

• In 3G, 4G symmetric key based mechanism for **authentication** and **key agreement** (AKA)

• Arkko et al. (2015) proposed embedding **Diffie-Hellman** to AKA
 – to achieve **perfect forward secrecy**

• Replacing AKA completely by public-key based mechanism would bring benefits:
 – **off-line** authentication, e.g. between devices
 – **non-repudiation**, e.g. for billing
Security set-up

• Related to **flexible security**
• Has to be very fast for some domains, e.g. automobile, e-health
• Has to be done in **secure** manner
 – No room for e.g. **downgrading** attacks
DoS protection

• DoS attacks against terminal devices in LTE (Borgaonkar et al., Blackhat EU. November 2015):
 – Downgrade to 3G or GSM
 – Deny all services
 – Deny selected services (block incoming calls)
 – Persistent attacks
 – Recovery requires re-boot or re-insertion of SIM
Example attack in LTE

UE in **Emergency Mode** silently

TAU Request
Integrity protected, unencrypted

TAU Reject

Rogue eNodeB

Reject cause: LTE and non LTE services not allowed

Not Integrity protected, unencrypted
DoS protection in 5G

• Both network and terminals are potential targets
• Only lightweight computations before authentication, esp. on network side
• Re-consideration of availability vs security trade-offs
Thanks!
Q & A